Чему равна вероятность события в. Статистическое определение вероятности. Вероятность суммы совместных событий. Пример

"Случайности не случайны"... Звучит так, словно сказал философ, но на деле изучать случайности удел великой науки математики. В математике случайностями занимается теория вероятности. Формулы и примеры заданий, а также основные определения этой науки будут представлены в статье.

Что такое теория вероятности?

Теория вероятности - это одна из математических дисциплин, которая изучает случайные события.

Чтобы было немного понятнее, приведем небольшой пример: если подкинуть вверх монету, она может упасть «орлом» или «решкой». Пока монета находится в воздухе, обе эти вероятности возможны. То есть вероятность возможных последствий соотносится 1:1. Если из колоды с 36-ю картами вытащить одну, тогда вероятность будет обозначаться как 1:36. Казалось бы, что здесь нечего исследовать и предугадывать, тем более при помощи математических формул. Тем не менее, если повторять определенное действие много раз, то можно выявить некую закономерность и на ее основе спрогнозировать исход событий в других условиях.

Если обобщить все вышесказанное, теория вероятности в классическом понимании изучает возможность возникновения одного из возможных событий в числовом значении.

Со страниц истории

Теория вероятности, формулы и примеры первых заданий появились еще в далеком Средневековье, когда впервые возникли попытки спрогнозировать исход карточных игр.

Изначально теория вероятности не имела ничего общего с математикой. Она обосновывалась эмпирическими фактами или свойствами события, которое можно было воспроизвести на практике. Первые работы в этой сфере как в математической дисциплине появились в XVII веке. Родоначальниками стали Блез Паскаль и Пьер Ферма. Длительное время они изучали азартные игры и увидели определенные закономерности, о которых и решили рассказать обществу.

Такую же методику изобрел Христиан Гюйгенс, хотя он не был знаком с результатами исследований Паскаля и Ферма. Понятие «теория вероятности», формулы и примеры, что считаются первыми в истории дисциплины, были введены именно им.

Немаловажное значение имеют и работы Якоба Бернулли, теоремы Лапласа и Пуассона. Они сделали теорию вероятности больше похожей на математическую дисциплину. Свой теперешний вид теория вероятностей, формулы и примеры основных заданий получили благодаря аксиомам Колмогорова. В результате всех изменений теория вероятности стала одним из математических разделов.

Базовые понятия теории вероятностей. События

Главным понятием этой дисциплины является "событие". События бывают трех видов:

  • Достоверные. Те, которые произойдут в любом случае (монета упадет).
  • Невозможные. События, что не произойдут ни при каком раскладе (монета останется висеть в воздухе).
  • Случайные. Те, что произойдут или не произойдут. На них могут повлиять разные факторы, которые предугадать очень трудно. Если говорить о монете, то случайные факторы, что могут повлиять на результат: физические характеристики монеты, ее форма, исходное положение, сила броска и т. д.

Все события в примерах обозначаются заглавными латинскими буквами, за исключением Р, которой отведена другая роль. Например:

  • А = «студенты пришли на лекцию».
  • Ā = «студенты не пришли на лекцию».

В практических заданиях события принято записывать словами.

Одна из важнейших характеристик событий - их равновозможность. То есть, если подбросить монету, все варианты исходного падения возможны, пока она не упала. Но также события бывают и не равновозможными. Это происходит, когда кто-то специально воздействует на исход. Например, «меченые» игральные карты или игральные кости, в которых смещен центр тяжести.

Еще события бывают совместимыми и несовместимыми. Совместимые события не исключают появления друг друга. Например:

  • А = «студентка пришла на лекцию».
  • В = «студент пришел на лекцию».

Эти события независимы друг от друга, и появление одного из них не влияет на появление другого. Несовместимые события определяются тем, что появление одного исключает появление другого. Если говорить о той же монете, то выпадение «решки» делает невозможным появление «орла» в этом же эксперименте.

Действия над событиями

События можно умножать и складывать, соответственно, в дисциплине вводятся логические связки «И» и «ИЛИ».

Сумма определяется тем, что может появиться или событие А, или В, или два одновременно. В случае когда они несовместимы, последний вариант невозможен, выпадет или А, или В.

Умножение событий заключается в появлении А и В одновременно.

Теперь можно привести несколько примеров, чтобы лучше запомнились основы, теория вероятности и формулы. Примеры решения задач далее.

Задание 1 : Фирма принимает участие в конкурсе на получение контрактов на три разновидности работы. Возможные события, которые могут произойти:

  • А = «фирма получит первый контракт».
  • А 1 = «фирма не получит первый контракт».
  • В = «фирма получит второй контракт».
  • В 1 = «фирма не получит второй контракт»
  • С = «фирма получит третий контракт».
  • С 1 = «фирма не получит третий контракт».

С помощью действий над событиями попробуем выразить следующие ситуации:

  • К = «фирма получит все контракты».

В математическом виде уравнение будет иметь следующий вид: К = АВС.

  • М = «фирма не получит ни одного контракта».

М = А 1 В 1 С 1 .

Усложняем задание: H = «фирма получит один контракт». Поскольку не известно, какой именно контракт получит фирма (первый, второй или третий), необходимо записать весь ряд возможных событий:

Н = А 1 ВС 1 υ АВ 1 С 1 υ А 1 В 1 С.

А 1 ВС 1 - это ряд событий, где фирма не получает первый и третий контракт, но получает второй. Соответственным методом записаны и другие возможные события. Символ υ в дисциплине обозначает связку «ИЛИ». Если перевести приведенный пример на человеческий язык, то фирма получит или третий контракт, или второй, или первый. Подобным образом можно записывать и другие условия в дисциплине «Теория вероятности». Формулы и примеры решения задач, представленные выше, помогут сделать это самостоятельно.

Собственно, вероятность

Пожалуй, в этой математической дисциплине вероятность события - это центральное понятие. Существует 3 определения вероятности:

  • классическое;
  • статистическое;
  • геометрическое.

Каждое имеет свое место в изучении вероятностей. Теория вероятности, формулы и примеры (9 класс) в основном используют классическое определение, которое звучит так:

  • Вероятность ситуации А равняется отношению числа исходов, что благоприятствуют ее появлению, к числу всех возможных исходов.

Формула выглядит так: Р(А)=m/n.

А - собственно, событие. Если появляется случай, противоположный А, его можно записывать как Ā или А 1 .

m - количество возможных благоприятных случаев.

n - все события, которые могут произойти.

Например, А = «вытащить карту червовой масти». В стандартной колоде 36 карт, 9 из них червовой масти. Соответственно, формула решения задания будет иметь вид:

Р(А)=9/36=0,25.

В итоге вероятность того, что из колоды вытянут карту червовой масти, составит 0,25.

К высшей математике

Теперь стало немного известно, что такое теория вероятности, формулы и примеры решения заданий, которые попадаются в школьной программе. Однако теория вероятностей встречается и в высшей математике, которая преподается в вузах. Чаще всего там оперируют геометрическими и статистическими определениями теории и сложными формулами.

Очень интересна теория вероятности. Формулы и примеры (высшая математика) лучше начинать изучать с малого - со статистического (или частотного) определения вероятности.

Статистический подход не противоречит классическому, а немного расширяет его. Если в первом случае нужно было определить, с какой долей вероятности произойдет событие, то в этом методе необходимо указать, как часто оно будет происходить. Здесь вводится новое понятие «относительная частота», которую можно обозначить W n (A). Формула ничем не отличается от классической:

Если классическая формула вычисляется для прогнозирования, то статистическая - согласно результатам эксперимента. Возьмем, к примеру, небольшое задание.

Отдел технологического контроля проверяет изделия на качество. Среди 100 изделий нашли 3 некачественных. Как найти вероятность частоты качественного товара?

А = «появление качественного товара».

W n (A)=97/100=0,97

Таким образом, частота качественного товара составляет 0,97. Откуда взяли 97? Из 100 товаров, которые проверили, 3 оказались некачественными. От 100 отнимаем 3, получаем 97, это количество качественного товара.

Немного о комбинаторике

Еще один метод теории вероятности называют комбинаторикой. Его основной принцип состоит в том, что если определенный выбор А можно осуществить m разными способами, а выбор В - n разными способами, то выбор А и В можно осуществить путем умножения.

Например, из города А в город В ведет 5 дорог. Из города В в город С ведет 4 пути. Сколькими способами можно доехать из города А в город С?

Все просто: 5х4=20, то есть двадцатью разными способами можно добраться из точки А в точку С.

Усложним задание. Сколько существует способов раскладывания карт в пасьянсе? В колоде 36 карт - это исходная точка. Чтобы узнать количество способов, нужно от исходной точки «отнимать» по одной карте и умножать.

То есть 36х35х34х33х32…х2х1= результат не вмещается на экран калькулятора, поэтому его можно просто обозначить 36!. Знак «!» возле числа указывает на то, что весь ряд чисел перемножается между собой.

В комбинаторике присутствуют такие понятия, как перестановка, размещение и сочетание. Каждое из них имеет свою формулу.

Упорядоченный набор элементов множества называют размещением. Размещения могут быть с повторениями, то есть один элемент можно использовать несколько раз. И без повторений, когда элементы не повторяются. n - это все элементы, m - элементы, которые участвуют в размещении. Формула для размещения без повторений будет иметь вид:

A n m =n!/(n-m)!

Соединения из n элементов, которые отличаются только порядком размещения, называют перестановкой. В математике это имеет вид: Р n = n!

Сочетаниями из n элементов по m называют такие соединения, в которых важно, какие это были элементы и каково их общее количество. Формула будет иметь вид:

A n m =n!/m!(n-m)!

Формула Бернулли

В теории вероятности, так же как и в каждой дисциплине, имеются труды выдающихся в своей области исследователей, которые вывели ее на новый уровень. Один из таких трудов - формула Бернулли, что позволяет определять вероятность появления определенного события при независимых условиях. Это говорит о том, что появление А в эксперименте не зависит от появления или не появления того же события в ранее проведенных или последующих испытаниях.

Уравнение Бернулли:

P n (m) = C n m ×p m ×q n-m .

Вероятность (р) появления события (А) неизменна для каждого испытания. Вероятность того, что ситуация произойдет ровно m раз в n количестве экспериментов, будет вычисляться формулой, что представлена выше. Соответственно, возникает вопрос о том, как узнать число q.

Если событие А наступает р количество раз, соответственно, оно может и не наступить. Единица - это число, которым принято обозначать все исходы ситуации в дисциплине. Поэтому q - число, которое обозначает возможность ненаступления события.

Теперь вам известна формула Бернулли (теория вероятности). Примеры решения задач (первый уровень) рассмотрим далее.

Задание 2: Посетитель магазина сделает покупку с вероятностью 0,2. В магазин зашли независимым образом 6 посетителей. Какова вероятность того, что посетитель сделает покупку?

Решение: Поскольку неизвестно, сколько посетителей должны сделать покупку, один или все шесть, необходимо просчитать все возможные вероятности, пользуясь формулой Бернулли.

А = «посетитель совершит покупку».

В этом случае: р = 0,2 (как указано в задании). Соответственно, q=1-0,2 = 0,8.

n = 6 (поскольку в магазине 6 посетителей). Число m будет меняться от 0 (ни один покупатель не совершит покупку) до 6 (все посетители магазина что-то приобретут). В итоге получим решение:

P 6 (0) = C 0 6 ×p 0 ×q 6 =q 6 = (0,8) 6 = 0,2621.

Ни один из покупателей не совершит покупку с вероятностью 0,2621.

Как еще используется формула Бернулли (теория вероятности)? Примеры решения задач (второй уровень) далее.

После вышеприведенного примера возникают вопросы о том, куда делись С и р. Относительно р число в степени 0 будет равно единице. Что касается С, то его можно найти формулой:

C n m = n! / m!(n-m)!

Поскольку в первом примере m = 0, соответственно, С=1, что в принципе не влияет на результат. Используя новую формулу, попробуем узнать, какова вероятность покупки товаров двумя посетителями.

P 6 (2) = C 6 2 ×p 2 ×q 4 = (6×5×4×3×2×1) / (2×1×4×3×2×1) × (0,2) 2 × (0,8) 4 = 15 × 0,04 × 0,4096 = 0,246.

Не так уж и сложна теория вероятности. Формула Бернулли, примеры которой представлены выше, прямое тому доказательство.

Формула Пуассона

Уравнение Пуассона используется для вычисления маловероятных случайных ситуаций.

Основная формула:

P n (m)=λ m /m! × e (-λ) .

При этом λ = n х p. Вот такая несложная формула Пуассона (теория вероятности). Примеры решения задач рассмотрим далее.

Задание 3 : На заводе изготовили детали в количестве 100000 штук. Появление бракованной детали = 0,0001. Какова вероятность, что в партии будет 5 бракованных деталей?

Как видим, брак - это маловероятное событие, в связи с чем для вычисления используется формула Пуассона (теория вероятности). Примеры решения задач подобного рода ничем не отличаются от других заданий дисциплины, в приведенную формулу подставляем необходимые данные:

А = «случайно выбранная деталь будет бракованной».

р = 0,0001 (согласно условию задания).

n = 100000 (количество деталей).

m = 5 (бракованные детали). Подставляем данные в формулу и получаем:

Р 100000 (5) = 10 5 /5! Х е -10 = 0,0375.

Так же как и формула Бернулли (теория вероятности), примеры решений с помощью которой написаны выше, уравнение Пуассона имеет неизвестное е. По сути его можно найти формулой:

е -λ = lim n ->∞ (1-λ/n) n .

Однако есть специальные таблицы, в которых находятся практически все значения е.

Теорема Муавра-Лапласа

Если в схеме Бернулли количество испытаний достаточно велико, а вероятность появления события А во всех схемах одинакова, то вероятность появления события А определенное количество раз в серии испытаний можно найти формулой Лапласа:

Р n (m)= 1/√npq x ϕ(X m).

X m = m-np/√npq.

Чтобы лучше запомнилась формула Лапласа (теория вероятности), примеры задач в помощь ниже.

Сначала найдем X m , подставляем данные (они все указаны выше) в формулу и получим 0,025. При помощи таблиц находим число ϕ(0,025), значение которого 0,3988. Теперь можно подставлять все данные в формулу:

Р 800 (267) = 1/√(800 х 1/3 х 2/3) х 0,3988 = 3/40 х 0,3988 = 0,03.

Таким образом, вероятность того, что рекламная листовка сработает ровно 267 раз, составляет 0,03.

Формула Байеса

Формула Байеса (теория вероятности), примеры решения заданий с помощью которой будут приведены ниже, представляет собой уравнение, которое описывает вероятность события, опираясь на обстоятельства, которые могли быть связаны с ним. Основная формула имеет следующий вид:

Р (А|B) = Р (В|А) х Р (А) / Р (В).

А и В являются определенными событиями.

Р(А|B) - условная вероятность, то есть может произойти событие А при условии, что событие В истинно.

Р (В|А) - условная вероятность события В.

Итак, заключительная часть небольшого курса «Теория вероятности» - формула Байеса, примеры решений задач с которой ниже.

Задание 5 : На склад привезли телефоны от трех компаний. При этом часть телефонов, которые изготавливаются на первом заводе, составляет 25%, на втором - 60%, на третьем - 15%. Известно также, что средний процент бракованных изделий у первой фабрики составляет 2%, у второй - 4%, и у третьей - 1%. Необходимо найти вероятность того, что случайно выбранный телефон окажется бракованным.

А = «случайно взятый телефон».

В 1 - телефон, который изготовила первая фабрика. Соответственно, появятся вводные В 2 и В 3 (для второй и третьей фабрик).

В итоге получим:

Р (В 1) = 25%/100% = 0,25; Р(В 2) = 0,6; Р (В 3) = 0,15 - таким образом мы нашли вероятность каждого варианта.

Теперь нужно найти условные вероятности искомого события, то есть вероятность бракованной продукции в фирмах:

Р (А/В 1) = 2%/100% = 0,02;

Р(А/В 2) = 0,04;

Р (А/В 3) = 0,01.

Теперь подставим данные в формулу Байеса и получим:

Р (А) = 0,25 х 0,2 + 0,6 х 0,4 + 0,15 х 0,01= 0,0305.

В статье представлена теория вероятности, формулы и примеры решения задач, но это только вершина айсберга обширной дисциплины. И после всего написанного логично будет задаться вопросом о том, нужна ли теория вероятности в жизни. Простому человеку сложно ответить, лучше спросить об этом у того, кто с ее помощью не единожды срывал джек-пот.

Для практической деятельности важно уметь сравнивать события по степени возможности их наступления. Очевидно, события - «выпадение дождя» и «выпадение снега» в первый день лета в данной местности, «выигрыш по одному билету» и «выигрыш по каждому из 5 приобретенных билетов» денежно-вещевой лотереи обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная мера.

Для количественной оценки степени возможности появления случайного события пользуются термином вероятность.

Поставим задачу дать количественную оценку возможности того, что при бросании игральной кости выпадет 4 очка. Выпадение четырех очков будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание – бросание игральной кости) назовем элементарным исходом (элементарным событием).В нашем примере возможны следующие 6 элементарных исходов: выпало 1 очко, 2 очка, 3 очка, 4 очка, 5 очков, 6 очков. Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию. В нашем примере из шести элементарных исходов событию А благоприятствует один. Следовательно, вероятность того, что выпавшее количество очков окажется равным 4, равна 1/ 6. Это число и дает ту количественную оценку степени возможности появления четырех очков, которую мы и хотели найти.

Согласно классическому определению, вероятность события А равна отношению числа благоприятствующих этому событию исходов к общему числу равновозможных элементарных исходов.

Из определения вероятности вытекают следующие ее свойства:

С в о й с т в о 1.Вероятность достоверного события равна единице.

Р(А) = т/п = п/п = 1.

С в о й с т в о 2. Вероятность невозможного события равна нулю.

Р(А) = т/п = 0/п = 0.

С в о й с т в о 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

0 Р(А) 1.

Пример 1. На территории предприятия произошла авария водопровода. Общая длина водопровода 150 м. В том числе 50 м. трубы приходится на труднодоступные места. Какова вероятность того, что ремонт придется производить именно на труднодоступном участке?

Р(А) = 50/150 = 1/3

Пример 2. В урне лежат т белых шаров и п черных. Чему равна вероятность вытащить белый шар (событие А) ?

3. Статистическое определение вероятности.

Пользуясь классическим определением вероятности, можно вычислить вероятность какого-либо случайного события, не прибегая к опыту. Однако это не всегда выполнимо, ибо на практике не всегда можно соблюдать условие равновозможности, лежащее в основе классического определения.

Например, если монета сплющена, то события «появление герба» и «появление цифры» нельзя считать равновозможными и формула (1) окажется неприменимой для подсчета вероятности любого из них. По этой причине наравне с классическим определением пользуются статистическим определением вероятности.

При изучении массовых явлений какое-либо случайное событие или случайная величина могут появляться несколько раз в процессе испытаний. Пусть, например, при п испытаниях событие А появилось т раз. Число т носит название частоты появления события А. Отношение частоты события А к общему числу испытаний п носит название частоты события или относительной частоты, которую обозначают

Если случайное событие имеет устойчивую частоту в серии испытаний, т.е. в каждой серии испытаний частота этого события изменяется незначительно и колеблется около некоторого положительного числа, то это число и принимается за вероятность данного события. Вычисленную таким образом вероятность называют статистической вероятностью.

(2)

Пример 1. Подбросим монету 10 раз и получим, например, такие результаты:

Г,

Г,

Ц,

Г,

Ц,

Г,

Ц,

Г,

Ц,

10) Ц,

С увеличением числа испытаний колебания частоты уменьшаются и частота становится практически устойчивой. Такую устойчивую частоту и принимают равной вероятности интересующего нас события.

В примере с подбрасыванием монеты число опытов взято произвольно. На самом деле для получения достоверного значения вероятности число опытов должно быть значительно больше.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008


Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек-от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат-исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

1) событие А-выпадает цифра 1, 2, 3, 4, 5 или 6;

2) событие В-выпадает цифра 7, 8 или 9;

3) событие С-выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это-достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы-невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие-это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие-это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события-как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

1) вероятность достоверного события считается равной 1;

2) вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется–теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски–probabilite , по-английски–probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А–выпадение числа 4. Значит, N(A)=1 и

P ( A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N ( B )=3 и P ( B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N ( C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается

. ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд–нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что

=0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна

, это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Глава I . СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

1.1. Закономерность и случайность, случайная изменчивость в точных науках, в биологии и медицине

Теория вероятностей – область математики, изучающая закономерности в случайных явлениях. Случайное явление – это явление, которое при неоднократном воспроизведении одного и того же опыта может протекать каждый раз несколько по-иному.

Очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности, но в различных ситуациях мы учитываем их по-разному. Так, в ряде практических задач ими можно пренебречь и рассматривать вместо реального явления его упрощенную схему – «модель», предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом выделяются самые главные, решающие факторы, характеризующие явление. Именно такая схема изучения явлений чаще всего применяется в физике, технике, механике; именно так выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по заданным исходным условиям. А влияние случайных, второстепенных, факторов на результат опыта учитывается здесь случайными ошибками измерений (методику их расчета рассмотрим далее).

Однако описанная классическая схема так называемых точных наук плохо приспособлена для решения многих задач, в которых многочисленные, тесно переплетающиеся между собой случайные факторы играют заметную (часто определяющую) роль. Здесь на первый план выступает случайная природа явления, которой уже нельзя пренебречь. Это явление необходимо изучать именно с точки зрения закономерностей, присущих ему как случайному явлению. В физике примерами таких явлений являются броуновское движение, радиоактивный распад, ряд квантово-механических процессов и др.

Предмет изучения биологов и медиков – живой организм, зарождение, развитие и существование которого определяется очень многими и разнообразными, часто случайными внешними и внутренними факторами. Именно поэтому явления и события живого мира во многом тоже случайны по своей природе.

Элементы неопределенности, сложности, многопричинности, присущие случайным явлениям, обусловливают необходимость создания специальных математических методов для изучения этих явлений. Разработка таких методов, установление специфических закономерностей, свойственных случайным явлениям, –главные задачи теории вероятностей. Характерно, что эти закономерности выполняются лишь при массовости случайных явлений. Причем индивидуальные особенности отдельных случаев как бы взаимно погашаются, а усредненный результат для массы случайных явлений оказывается уже не случайным, а вполне закономерным. В значительной мере данное обстоятельство явилось причиной широкого распространения вероятностных методов исследования в биологии и медицине.

Рассмотрим основные понятия теории вероятностей.

1.2. Вероятность случайного события

Каждая наука, развивающая общую теорию какого-либо круга явлений, базируется на ряде основных понятий. Например, в геометрии – это понятия точки, прямой линии; в механике – понятия силы, массы, скорости и т. д. Основные понятия существуют и в теории вероятностей, одно из них – случайное событие.

Случайное событие – это всякое явление (факт), которое в результате опыта (испытания) может произойти или не произойти.

Случайные события обозначаются буквами А, В, С … и т. д. Приведем несколько примеров случайных событий:

А –выпадение орла (герба) при подбрасывании стандартной монеты;

В – рождение девочки в данной семье;

С – рождение ребенка с заранее заданной массой тела;

D – возникновение эпидемического заболевания в данном регионе в определенный период времени и т. д.

Основной количественной характеристикой случайного события является его вероятность. Пусть А – какое-то случайное событие. Вероятность случайного события А – это математическая величина, которая определяет возможность его появления. Она обозначается Р (А ).

Рассмотрим два основных метода определения данной величины.

Классическое определение вероятности случайного события обычно базируется на результатах анализа умозрительных опытов (испытаний), суть которых определяется условием поставленной задачи. При этом вероятность случайного события Р(А) равна:

где m – число случаев, благоприятствующих появлению события А ; n – общее число равновозможных случаев.

Пример 1. Лабораторная крыса помещена в лабиринт, в котором лишь один из четырех возможных путей ведет к поощрению в виде пищи. Определите вероятность выбора крысой такого пути.

Решение : по условию задачи из четырех равновозможных случаев (n =4) событию А (крыса находит пищу)
благоприятствует только один, т. е. m = 1 Тогда Р (А ) = Р (крыса находит пищу) = = 0,25= 25%.

Пример 2. В урне 20 черных и 80 белых шаров. Из нее наугад вынимается один шар. Определите вероятность того, что этот шар будет черным.

Решение : количество всех шаров в урне – это общее число равновозможных случаев n , т. е. n = 20 + 80 = 100, из них событие А (извлечение черного шара) возможно лишь в 20, т. е. m = 20. Тогда Р (А ) = Р (ч. ш.) = = 0,2 = 20%.

Перечислим свойства вероятности следующие из ее классического определения – формула (1):

1. Вероятность случайного события – величина безразмерная.

2. Вероятность случайного события всегда положительна и меньше единицы, т. е. 0 < P (A ) < 1.

3. Вероятность достоверного события, т. е. события, которое в результате опыта обязательно произойдет (m = n ), равна единице.

4. Вероятность невозможного события (m = 0) равна нулю.

5. Вероятность любого события – величина не отрицательная и не превышающая единицу:
0 £ P (A ) £ 1.

Статистическое определение вероятности случайного события применяется тогда, когда невозможно использоватьклассическое определение (1). Это часто имеет место в биологии и медицине. В таком случае вероятность Р (А ) определяют путем обобщения результатов реально проведенных серий испытаний (опытов).

Введем понятие относительной частоты появления случайного события. Пусть была проведена серия, состоящая из N опытов (число N может быть выбрано заранее); интересующее нас событие А произошло в М из них (M < N ). Отношение числа опытов М , в которых произошло это событие, к общему числу проведенных опытов N называют относительной частотой появления случайного события А в данной серии опытов – Р * (А )

Р* (А ) = .

Экспериментально установлено, что если серии испытаний (опытов) проводятся в одинаковых условиях и в каждой из них число N достаточно велико, то относительная частота обнаруживает свойство устойчивости: от серии к серии она меняется мало, приближаясь c увеличением числа опытов к некоторой постоянной величине. Ее и принимают за статистическую вероятность случайного события А :

Р (А) = lim , при N , (2)

Итак, статистической вероятностью Р (А ) случайного события А называют предел, к которому стремится относительная частота появления этого события при неограниченном возрастании числа испытаний (при N → ∞).

Приближенно статистическая вероятность случайного события равна относительной частоте появления этого события при большом числе испытаний:

Р (А ) ≈ Р* (А ) = (при больших N ) (3)

Например, в опытах по бросанию монеты относительная частота выпадения герба при 12000 бросаний оказалась равной 0,5016, а при 24000 бросаний – 0,5005. В соответствии с формулой (1):

P (герб) = = 0,5 = 50%

Пример. При врачебном обследовании 500 человек у 5 из них обнаружили опухоль в легких (о. л.). Определите относительную частоту и вероятность этого заболевания.

Решение : по условию задачи М = 5, N = 500, относительная частота Р *(о. л.) = М /N = 5/500 = 0,01; поскольку N достаточно велико, можно с хорошей точностью считать, что вероятность наличия опухоли в легких равна относительной частоте этого события:

Р (о. л.) = Р *(о. л.) = 0,01 = 1%.

Перечисленные ранее свойства вероятности случайного события сохраняются и при статистическом определении данной величины.

1.3. Виды случайных событий. Основные теоремы теории вероятностей

Все случайные события можно разделить на:

¾ несовместные;

¾ независимые;

¾ зависимые.

Для каждого вида событий характерны свои особенности и теоремы теории вероятностей.

1.3.1. Несовместные случайные события. Теорема сложения вероятностей

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример1. Подброшена монета. При ее падении появление «герба» исключает появление «решки» (надписи, определяющей цену монеты). События «выпал герб» и «выпала решка» несовместные.

Пример 2. Получение студентом на одном экзамене оценки «2», или «3», или «4», или «5» – события несовместные, так как одна из этих оценок исключает другую на том же экзамене.

Для несовместных случайных событий выполняется теорема сложения вероятностей: вероятность появления одного, но все равно какого, из нескольких несовместных событий А1, А2, А3 … А k равна сумме их вероятностей:

Р(А1или А2 … или А k ) = Р(А1) + Р(А2) + …+ Р(А k ). (4)

Пример 3. В урне находится 50 шаров: 20 белых, 20 черных и 10 красных. Найдите вероятность появления белого (событие А ) или красного шара (событие В ), когда шар наугад достают из урны.

Решение: Р (А или В ) = Р (А ) + Р (В );

Р (А ) = 20/50 = 0,4;

Р (В ) = 10/50 = 0,2;

Р (А или В ) = Р (б. ш. или к. ш.) = 0,4 + 0,2 = 0,6 = 60%.

Пример 4. В классе 40 детей. Из них в возрасте от 7 до 7,5 лет 8 мальчиков (А ) и 10 девочек (В ). Найдите вероятность присутствия в классе детей такого возраста.

Решение: Р (А ) = 8/40 = 0,2; Р (В ) = 10/40 = 0,25.

Р(А или В) = 0,2 + 0,25 = 0,45 = 45%

Следующее важное понятие – полная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

Пример 5. Стрелок произвел выстрел по мишени. Обязательно произойдет одно из следующих событий: попадание в «десятку», в «девятку», в «восьмерку»,.. ,в «единицу» или промах. Эти 11 несовместных событий образуют полную группу.

Пример 6. На экзамене в Вузе студент может получить одну из следующих четырех оценок: 2, 3, 4 или 5. Эти четыре несовместных события также образуют полную группу.

Если несовместные события А1, А2 … А k образуют полную группу, то сумма вероятностей этих событий всегда равна единице:

Р (А1 ) + Р (А2 )+ … Р (А k ) = 1, (5)

Это утверждение часто используется при решении многих прикладных задач.

Если два события единственно возможны и несовместны, то их называют противоположными и обозначают А и . Такие события составляют полную группу, поэтому сумма их вероятностей всегда равна единице:

Р (А ) + Р () = 1. (6)

Пример 7. Пусть Р (А ) – вероятность летального исхода при некотором заболевании; она известна и равна 2%. Тогда вероятность благополучного исхода при этом заболевании равна 98% (Р () = 1 – Р (А ) = 0,98), так как Р (А ) + Р () = 1.

1.3.2. Независимые случайные события. Теорема умножения вероятностей

Случайные события называются независимыми, если появление одного из них никак не влияет на вероятность появления других событий.

Пример 1. Если есть две или более урны с цветными шарами, то извлечение какого-либо шара из одной урны никак не повлияет на вероятность извлечения других шаров из оставшихся урн.

Для независимых событий справедлива теорема умножения вероятностей: вероятность совместного (одновременного ) появления нескольких независимых случайных событий равна произведению их вероятностей:

Р(А1и А2 и А3 … и А k ) = Р(А1) ∙Р(А2) ∙…∙Р(А k ). (7)

Совместное (одновременное) появление событий означает, что происходят события и А1, и А2 , и А3 … и А k .

Пример 2. Есть две урны. В одной находится 2 черных и 8 белых шаров, в другой – 6 черных и 4 белых. Пусть событие А –выбор наугад белого шара из первой урны, В – из второй. Какова вероятность выбрать наугад одновременно из этих урн по белому шару, т. е. чему равна Р (А и В )?

Решение: вероятность достать белый шар из первой урны
Р (А ) = = 0,8 из второй – Р (В ) = = 0,4. Вероятность одновременно достать по белому шару из обеих урн –
Р (А и В ) = Р (А Р (В ) = 0,8∙ 0,4 = 0,32 = 32%.

Пример 3. Рацион с пониженным содержанием йода вызывает увеличение щитовидной железы у 60% животных большой популяции. Для эксперимента нужны 4 увеличенных железы. Найдите вероятность того, что у 4 случайно выбранных животных будет увеличенная щитовидная железа.

Решение : Случайное событие А – выбор наугад животного с увеличенной щитовидной железой. По условию задачи вероятность этого события Р (А ) = 0,6 = 60%. Тогда вероятность совместного появления четырех независимых событий – выбор наугад 4 животных с увеличенной щитовидной железой – будет равна:

Р (А 1 и А 2 и А 3 и А 4) = 0,6 ∙ 0,6 ∙0,6 ∙ 0,6=(0,6)4 ≈ 0,13 = 13%.

1.3.3. Зависимые события. Теорема умножения вероятностей для зависимых событий

Случайные события А и В называются зависимыми, если появление одного из них, например, А изменяет вероятность появления другого события – В. Поэтому для зависимых событий используются два значения вероятности: безусловная и условная вероятности.

Если А и В зависимые события, то вероятность наступления события В первым (т. е. до события А ) называется безусловной вероятностью этого события и обозначается Р (В ). Вероятность наступления события В при условии, что событие А уже произошло, называется условной вероятностью события В и обозначается Р (В /А ) или РА (В).

Аналогичный смысл имеют безусловная – Р (А ) и условная – Р (А/В ) вероятности для события А.

Теорема умножения вероятностей для двух зависимых событий: вероятность одновременного наступления двух зависимых событий А и В равна произведению безусловной вероятности первого события на условную вероятность второго:

Р (А и В ) = Р (А ) ∙Р (В/А ) , (8)

А , или

Р (А и В ) = Р (В ) ∙Р (А/В), (9)

если первым наступает событие В .

Пример 1. В урне 3 черных шара и 7 белых. Найдите вероятность того, что из этой урны один за другим (причем первый шар не возвращают в урну) будут вынуты 2 белых шара.

Решение : вероятность достать первый белый шар (событие А ) равна 7/10. После того как он вынут, в урне остается 9 шаров, из них 6 белых. Тогда вероятность появления второго белого шара (событие В ) равна Р (В /А ) = 6/9, а вероятность достать подряд два белых шара равна

Р (А и В ) = Р (А )∙Р (В /А ) = = 0,47 = 47%.

Приведенная теорема умножения вероятностей для зависимых событий допускает обобщение на любое количество событий. В частности, для трех событий, связанных друг с другом:

Р (А и В и С ) = Р (А ) ∙ Р (В/А ) ∙ Р (С/АВ ). (10)

Пример 2. В двух детских садах, каждый из которых посещает по 100 детей, произошла вспышка инфекционного заболевания. Доли заболевших составляют соответственно 1/5 и 1/4, причем в первом учреждении 70 %, а во втором – 60 % заболевших – дети младше 3-х лет. Случайным образом выбирают одного ребенка. Определите вероятность того, что:

1) выбранный ребенок относится к первому детскому саду (событие А ) и болен (событие В ).

2) выбран ребенок из второго детского сада (событие С ), болен (событие D ) и старше 3-х лет (событие Е ).

Решение . 1) искомая вероятность –

Р (А и В ) = Р (А ) ∙ Р (В /А ) = = 0,1 = 10%.

2) искомая вероятность:

Р (С и D и Е ) = Р (С ) ∙ Р (D /C ) ∙ Р (Е /CD ) = = 5%.

1.4. Формула Байеса

Если вероятность совместного появления зависимых событий А и В не зависит от того, в каком порядке они происходят, то Р (А и В ) = Р (А ) ∙Р (В/А ) = Р (В ) × Р (А/В ). В этом случае условную вероятность одного из событий можно найти, зная вероятности обоих событий и условную вероятность второго:

Р (В/А ) = (11)

Обобщением данной формулы на случай многих событий является формула Байеса.

Пусть «n » несовместных случайных событий Н1, Н2, …, Н n , образуют полную группу событий. Вероятности этих событий – Р (Н1 ), Р (Н2 ), …, Р (Н n ) известны и так как они образуют полную группу, то = 1.

Некоторое случайное событие А связано с событиями Н1, Н2, …, Н n , причем известны условные вероятности появления события А с каждым из событий Н i , т. е. известны Р (А/Н1 ), Р (А/Н2 ), …, Р (А/Н n ). При этом сумма условных вероятностей Р (А/Н i ) может быть не равна единице т. е. ≠ 1.

Тогда условная вероятность появления события Н i при реализации события А (т. е. при условии, что событие А произошло) определяется формулой Байеса:

Причем для этих условных вероятностей .

Формула Байеса нашла широкое применение не только в математике, но и в медицине. Например, она используется для вычисления вероятностей тех или иных заболеваний. Так, если Н 1,…, Н n – предполагаемые диагнозы для данного пациента, А – некоторый признак, имеющий отношение к ним (симптом, определенный показатель анализа крови, мочи, деталь рентгенограммы и т. д.), а условные вероятности Р (А/Н i ) проявления этого признака при каждом диагнозе Н i (i = 1,2,3,…n ) заранее известны, то формула Байеса (12) позволяет вычислить условные вероятности заболеваний (диагнозов) Р (Н i ) после того как установлено, что характерный признак А присутствует у пациента.

Пример1. При первичном осмотре больного предполагаются 3 диагноза Н 1, Н 2, Н 3. Их вероятности, по мнению врача, распределяются так: Р (Н 1) = 0,5; Р (Н 2) = 0,17; Р (Н 3) = 0,33. Следовательно, предварительно наиболее вероятным кажется первый диагноз. Для его уточнения назначается, например, анализ крови, в котором ожидается увеличение СОЭ (событие А ). Заранее известно (на основании результатов исследований), что вероятности увеличения СОЭ при предполагаемых заболеваниях равны:

Р (А /Н 1) = 0,1; Р (А /Н 2) = 0,2; Р (А /Н 3) = 0,9.

В полученном анализе зафиксировано увеличение СОЭ (событие А произошло). Тогда расчет по формуле Байеса (12) дает значения вероятностей предполагаемых заболеваний при увеличенном значении СОЭ: Р (Н 1/А ) = 0,13; Р (Н 2/А ) = 0,09;
Р (Н 3/А ) = 0,78. Эти цифры показывают, что с учетом лабораторных данных наиболее реален не первый, а третий диагноз, вероятность которого теперь оказалась достаточно большой.

Приведенный пример – простейшая иллюстрация того, как с помощью формулы Байеса можно формализовать логику врача при постановке диагноза и благодаря этому создать методы компьютерной диагностики.

Пример 2. Определите вероятность, оценивающую степень риска перинатальной* смертности ребенка у женщин с анатомически узким тазом.

Решение : пусть событие Н 1 – благополучные роды. По данным клинических отчетов, Р (Н 1) = 0,975 = 97,5 %, тогда, если Н2 – факт перинатальной смертности, то Р (Н 2) = 1 – 0,975 = 0,025 = 2,5 %.

Обозначим А – факт наличия узкого таза у роженицы. Из проведенных исследований известны: а) Р (А /Н 1) – вероятность узкого таза при благоприятных родах, Р (А /Н 1) = 0,029, б) Р (А /Н 2) – вероятность узкого таза при перинатальной смертности,
Р (А /Н 2) = 0,051. Тогда искомая вероятность перинатальной смертности при узком тазе у роженицы рассчитывается по формуле Байса (12) и равна:


Таким образом, риск перинатальной смертности при анатомически узком тазе значительно выше (почти вдвое) среднего риска (4,4 % против 2,5 %).

Подобные расчеты, обычно выполняемые с помощью компьютера, лежат в основе методов формирования групп пациентов повышенного риска, связанного с наличием того или иного отягощающего фактора.

Формула Байеса очень полезна для оценки многих других медико-биологических ситуаций, что станет очевидным при решении приведенных в пособии задач.

1.5. О случайных событиях с вероятностями близкими к 0 или к 1

При решении многих практических задач приходится иметь дело с событиями, вероятность которых очень мала, т. е. близка к нулю. На основании опыта в отношении таких событий принят следующий принцип. Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании оно не наступит, иначе говоря, возможностью его появления можно пренебречь. Ответ на вопрос, насколько малой должна быть эта вероятность, определяется существом решаемых задач, тем, насколько важен для нас результат предсказания. Например, если вероятность того, что парашют при прыжке не раскроется равна 0,01, то применение таких парашютов недопустимо. Однако равная той же 0,01 вероятность того, что поезд дальнего следования прибудет с опозданием, делает нас практически уверенными в том, что он прибудет вовремя.

Достаточно малую вероятность, при которой (в данной конкретной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,01 (однопроцентный уровень значимости) или 0,05 (пятипроцентный уровень значимости), намного реже он берется равным 0,001.

Введение уровня значимости позволяет утверждать, что если некоторое событие А практически невозможно, то противоположное событие - практически достоверно, т. е. для него Р () » 1.

Глава II . СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

2.1. Случайные величины, их виды

В математике величина – это общее название различных количественных характеристик предметов и явлений. Длина, площадь, температура, давление и т. д. – примеры разных величин.

Величина, которая принимает различные числовые значения под влиянием случайных обстоятельств, называется случайной величиной . Примеры случайных величин: число больных на приеме у врача; точные размеры внутренних органов людей и т. д.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает только определенные отделенные друг от друга значения, которые можно установить и перечислить.

Примерами дискретной случайной величиной являются:

– число студентов в аудитории – может быть только целым положительным числом: 0,1,2,3,4….. 20…..;

– цифра, которая появляется на верхней грани при бросании игральной кости – может принимать лишь целые значения от 1 до 6;

– относительная частота попадания в цель при 10 выстрелах – ее значения: 0; 0,1; 0,2; 0,3 …1

– число событий, происходящих за одинаковые промежутки времени: частота пульса, число вызовов скорой помощи за час, количество операций в месяц с летальным исходом и т. д.

Случайная величина называется непрерывной, если она может принимать любые значения внутри определенного интервала, который иногда имеет резко выраженные границы, а иногда – нет *. К непрерывным случайным величинам относятся, например, масса тела и рост взрослых людей, масса тела и объем мозга, количественное содержание ферментов у здоровых людей, размеры форменных элементов крови, р Н крови и т. п.

Понятие случайной величины играет определяющую роль в современной теории вероятностей, разработавшей специальные приемы перехода от случайных событий к случайным величинам.

Если случайная величина зависит от времени, то можно говорить о случайном процессе.

2.2. Закон распределения дискретной случайной величины

Чтобы дать полную характеристику дискретной случайной величины необходимо указать все ее возможные значения и их вероятности.

Соответствие между возможными значениями дискретной случайной величины и их вероятностями называется законом распределения этой величины.

Обозначим возможные значения случайной величины Х через х i , а соответствующие им вероятности – через р i *. Тогда закон распределения дискретной случайной величины можно задать тремя способами: в виде таблицы, графика или формулы.

В таблице, которая называется рядом распределения, перечисляются все возможные значения дискретной случайной величины Х и соответствующие этим значениям вероятности Р (Х ):

Х

…..

…..

P (X )

…..

…..

При этом сумма всех вероятностей р i должна быть равна единице (условие нормировки):

р i = p 1 + p 2 + ... + pn = 1. (13)

Графически закон представляется ломаной линией, которую принято называть многоугольником распределения (рис.1). Здесь по горизонтальной оси откладывают все возможные значения случайной величины х i , , а по вертикальной оси – соответствующие им вероятности р i

Аналитически закон выражается формулой. Например, если вероятность попадания в цель при одном выстреле равна р, то вероятность поражения цели 1 раз при n выстрелах дается формулой Р (n ) = n qn -1 × p , где q = 1 – р – вероятность промаха при одном выстреле.

2.3. Закон распределения непрерывной случайной величины. Плотность распределения вероятности

Для непрерывных случайных величин невозможно применить закон распределения в формах, приведенных выше, поскольку такая величина имеет бесчисленное («несчетное») множество возможных значений, сплошь заполняющих некоторый интервал. Поэтому составить таблицу, в которой были бы перечислены все ее возможные значения, или построить многоугольник распределения нельзя. Кроме того, вероятность какого-либо ее конкретного значения очень мала (близка к 0)*. Вместе с тем различные области (интервалы) возможных значений непрерывной случайной величины не равновероятны. Таким образом, и в данном случае действует некий закон распределения, хотя и не в прежнем смысле.

Рассмотрим непрерывную случайную величину Х , возможные значения которой сплошь заполняют некий интервал , b )**. Закон распределения вероятностей такой величины должен позволить найти вероятность попадания ее значения в любой заданный интервал (х1, х2 ), лежащий внутри (а, b ), рис.2.

Эту вероятность обозначают Р (х1 < Х < х2 ), или
Р (х1 £ Х £ х2 ).

Рассмотрим сначала очень малый интервал значений Х – от х до (х + D х ); см. рис.2. Малая вероятность d Р того, что случайная величина Х примет какое-то значение из интервала (х, х + D х ), будет пропорциональна величине данного интервала D х: d Р ~ D х , или, введя коэффициент пропорциональности f , который сам может зависеть от х , получим:

d Р = f (х ) × Dх = f (x ) × dx (14)

Введенная здесь функция f (х ) называется плотностью распределения вероятностей случайной величины Х, или, короче, плотностью вероятности , плотностью распределения . Уравнение (13) – дифференциальное уравнение, решение которого дает вероятность попадания величины Х в интервал (х1 , х2) :

Р (х1 < Х < х2 ) = f (х ) d х. (15)

Графически вероятность Р (х1 < Х < х2 ) равна площади криволинейной трапеции, ограниченной осью абсцисс, кривой f (х ) и прямыми Х = х1 и Х = х2 (рис.3). Это следует из геометрического смысла определенного интеграла (15) Кривая f (х ) при этом называется кривой распределения.

Из (15) следует, что если известна функция f (х ), то, изменяя пределы интегрирования, можно найти вероятность для любых интересующих нас интервалов. Поэтому именно задание функции f (х ) полностью определяет закон распределения для непрерывных случайных величин.

Для плотности вероятности f (х ) должно выполняться условие нормировки в виде:

f (х ) d х = 1, (16)

если известно, что все значения Х лежат в интервале (а, b ), или в виде:

f (х ) d х = 1 , (17)

если границы интервала для значений Х точно неопределенны. Условия нормировки плотности вероятности (16) или (17) являются следствием того, что значения случайной величины Х достоверно лежат в пределах (а, b ) или (-¥, +¥). Из (16) и (17) следует, что площадь фигуры, ограниченной кривой распределения и осью абсцисс, всегда равна 1.

2.4. Основные числовые характеристики случайных величин

Результаты, изложенные в параграфах 2.2 и 2.3, показывают, что полную характеристику дискретной и непрерывной случайных величин можно получить, зная законы их распределения. Однако во многих практически значимых ситуациях пользуются так называемыми числовыми характеристиками случайных величин, главное назначение этих характеристик – выразить в сжатой форме наиболее существенные особенности распределения случайных величин. Важно, что данные параметры представляют собой конкретные (постоянные) значения, которые можно оценивать с помощью полученных в опытах данных. Этими оценками занимается «Описательная статистика».

В теории вероятностей и математической статистике используется достаточно много различных характеристик, но мы рассмотрим только наиболее употребляемые. Причем лишь для части из них приведем формулы, по которым рассчитываются их значения, в остальных случаях вычисления оставим компьютеру.

Рассмотрим характеристики положения – математическое ожидание, моду, медиану.

Они характеризуют положение случайной величины на числовой оси, т. е. указывают некоторое ориентировочное значение, около которого группируются все возможные значения случайной величины. Среди них важнейшую роль играет математическое ожидание М (Х ).



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...