В устойчивой коллоидной системе превалируют силы отталкивания. Устойчивость магнитных жидкостей. Защитное действие молекулярных

Образование лиофобных дисперсных систем сопровождается увеличением свободной поверхностной энергии, поэтому дисперсные системы термодинамически неустойчивы. Однако, при определенных условиях они могут сохраняться в течение длительного времени.

Существуют два вида относительной устойчивости дисперсных систем: седиментационная и агрегативная.

Седиментационная устойчивость − это способность дисперсной системы сохранять неизменным во времени распределение частиц по объему системы, т.е. способность системы противостоять действию силы тяжести.

Действию силы тяжести противостоит диффузия. Соотношение этих факторов, т.е. се­диментационная устойчивость, определяется, главным образом, размерами частиц дисперсной фазы.

Лиофобные золи (10 - 7 –10 - 5 см) - седиментационно-устойчивые системы. Здесь диффузия обеспечивает равномерное распределение частиц по объему системы.

В микрогетерогенных системах (10 - 5 − 10 - 3 см) − устанавливается седимен­та­ционно-диффузионное равновесие, для которого характерно гипсометрическое распределение частиц по объёму системы, выражающееся в распределении концентрации частиц по высоте. При этом концентрация частиц с высотой убывает.

Грубодисперсные системы (более 10 - 3 см) − седиментационно неустойчивые системы. В них происходит быстрая седиментация.

В жидкой среде зависимость скорости седиментации частиц (U) по объёму системы, выражающаяся в распределении концентрации частиц по высоте в зависимости от их радиуса, определяется уравнением Стокса:

где К - постоянная Стокса,

,

где η − вязкость среды; g − ускорение силы тяжести; ρ и ρ 0 − плотность частицы и дисперсионной среды, соответственно.

Суспензии, встречающиеся в практике, чаще всего полидисперсны, содержат частицы различных размеров. Зная скорость седиментации, можно рассчитать радиусы оседающих частиц. Седиментационный анализ суспензии, основанный на регистрации кинетики накопления осадка, составляет основу метода расчета кривых распределения вещества суспензии по радиусам частиц.



При седиментации дисперсионных систем могут наблюдаться 2 различных случая. В одном, когда каждая частица оседает отдельно, не сцепляясь с другими, оседание происходит медленно. Такая дисперсная система называется агрегативно устойчивой.

В случае, когда частицы дисперсной фазы коагулируют - сцепляются друг с другом под действием молекулярных сил и оседают в виде целых хлопьев, оседание происходит очень быстро. Такие системы называют агрегатно неустойчивыми.

Агрегативная устойчивость - это способность дисперсной системы сохранять неизменной во времени степень дисперсности, т.е. размеры частиц и их индивидуальность.

При нарушении агрегативной устойчивости происходит коагуляция.

Коагуляцией называется процесс слипания частиц с образованием крупных агрегатов. В результате коагуляции система теряет свою седиментационную устойчивость, так как частицы становятся слишком крупными и не могут участвовать в броуновском движении.

Коагуляция является самопроизвольным процессом, так как она приводит к уменьшению межфазной поверхности и, следовательно, к уменьшению свободной поверхностной энергии.

Различают две стадии коагуляции.

1 стадия - скрытая коагуляция . На этой стадии, не сопровождающейся внешними изменениями системы, частицы укрупняются, но еще не теряют своей седиментационной устойчивости.

2 стадия - явная коагуляция . На этой стадии частицы теряют свою седиментационную устойчивость, происходят наблюдаемые невооруженным глазом изменения системы: перемена окраски, помутнение, оседание частиц под действием силы тяжести.

Причины коагуляции многообразны, но наибольший интерес вызывает коагуляция электролитами, основные правила которой следующие:

1. Все сильные электролиты, добавленные к золю в достаточном количестве, вызывают его коагуляцию.

Минимальная концентрация электролита, при которой начинается коагуляция, называется порогом коагуляции С К. Значение C K рассчитывают по уравнению:

,

где c эл − концентрация введенного электролита в моль/л; V п − пороговый объем электро­лита, вызвавший коагуляцию; V− объем золя.

Объем золя, который коагулирует под действием 1 моль электролита, называется коагулирующей способностью V К,

.

Значит, чем меньше порог коагуляции, тем больше коагулирующая способность электролита.

2. Коагулирующим действием обладает только тот ион, заряд которого совпадает по знаку с зарядом противоиона мицеллы; этот ион называется ионом-коагулянтом.

3. Коагулирующая способность иона-коагулянта тем больше, чем больше заряд иона. Количественно эта закономерность описывается эмпирическим правилом Шульце-Гарди:

,

где α − постоянная для данной системы величина; Z − заряд иона-коагулянта.

4. Коагулирующая способность иона при одинаковом заряде тем больше, чем больше его кристаллический радиус.

5. при увеличении концентрации иона-коагулянта - потенциал золя уменьшается и агрегативная устойчивость золя понижается, при пороговой концентрации = 0.

Скорость коагуляции ν − это изменение концентрации коллоидных частиц в единицу времени при постоянном объеме системы.

Различают быструю и медленную коагуляцию.

При быстрой коагуляции каждое столкновение частиц приводит к их слипанию.

Теорию быстрой коагуляции разработал Смолуховский, который вывел уравнение:

,

где ν 0 − концентрация частиц золя в начальный момент времени; ν t − концентрация частиц золя в момент времени t; k к − константа скорости коагуляции (константа Смолуховского).

,

где k – константа Больцмана, k = 1,38∙10 −23 Дж∙К −1 ; – вязкость дисперсионной среды.

Из уравнения Смолуховского:

.

Для характеристики быстрой коагуляции используется период коагуляции (период половинной коагуляции).

Период коагуляции (θ) - это время, через которое концентрация коллоидных частиц уменьшается в два раза.

При , t = θ,

Тогда из вышеприведенного уравнения вытекает:

или ,

Медленная коагуляция связана с неполной эффективностью столкновений вследствие существования энергетического барьера. Поэтому только некоторые столкновения частиц приводят к их слипанию.

Среди факторов устойчивости лиофобных золей главную роль играют следующие:

- электростатический фактор устойчивости. Он обусловлен наличием ДЭС и дзета- по тенциала на поверхности частиц дисперсной фазы;

- адсорбционно-сольватный фактор устойчивости обусловлен снижением поверхностного натяжения в результате взаимодействия дисперсионной среды с частицей дисперсной фазы;

- структурно-механический фактор устойчивости обусловлен тем, что на поверхности частиц дисперсной фазы образуются прочные упругие пленки, препятствующие взаимодействию частиц.

Современная теория устойчивости развитая российскими и голландскими учеными Дерягиным, Ландау, Фервеем и Овербеном (теория ДЛФО) утверждает, что взаимодействие между сблизившимися коллоидными частицами совершается в тонкой прослойке дисперсионной среды, разделяющей частицы. В этом слое появляется дополнительное давление, которое названо расклинивающим давлением. Оно положительно, когда давление в слое понижено, это препятствует вытеканию из него жидкости, т.е. препятствует сближению частиц.

Расклинивающее давление может быть и отрицательным, т.е. повышать давление в слое, ускорять вытекание из него жидкости и способствовать сближению частиц.

Возникновение расклинивающего давления в тонких жидких слоях обусловлено, главным образом, двумя факторами:

Электростатическим взаимодействием в слое - это силы отталкивания с энергией U отт;

Ван-дер-Ваальсовыми силами притяжения - с энергией U пр.

Результирующая энергия межчастичного взаимодействия U определяется как разность двух составляющих:

U = U отт – U пр

Если U отт > U пр, то преобладают силы отталкивания, коагуляция не происходит, золь является агрегативно устойчивым. В противоположном случае преобладают силы притяжения между частицами, происходит коагуляция.

При коагуляции золя электролитами различают концентрационную коагуляцию и нейтрализационную коагуляцию.

Концентрационная коагуляция имеет место, когда она происходит под действием индифферентного электролита вследствие сжатия диффузного слоя противоионов и уменьшения значения дзета-потенциала.

Рассмотрим концентрационную коагуляцию золя хлорида серебра, стабилизированного нитратом серебра, при введении в золь нитрата калия.

Формула мицеллы имеет вид:

{n ∙ m Ag + ∙ (m-x) NO 3 - }x + ∙ x NO 3 - .

При добавлении KNO 3 диффузный слой противоионов предельно сжимается, формула мицеллы приобретает вид:

{n ∙ m Ag + ∙ m NO 3 - }.

При этом исчезает диффузный слой, дзета-потенциал становится равным нулю. Поэтому ничто не мешает коллоидным частицам сблизиться на такое расстояние, где преобладают силы притяжения - происходит коагуляция. Так как в данном случае причиной коагуляции является увеличение концентрации противоионов, она называется концентрационной коагуляцией.

Нейтрализационная коагуляция происходит при добавлении к золю неиндифферентного электролита. При этом потенциалопределяющие ионы связываются в малорастворимые соединения, что приводит к уменьшению абсолютных величин термодинамического потенциала, а следовательно, и дзета-потенциала вплоть до нуля.

Если взять рассмотренный ранее золь хлорида серебра, то для нейтрализации потенциалопределяющих ионов Ag + в золь необходимо ввести, например, хлорид калия. После добавления определенного количества этого неиндифферентного электролита мицелла будет иметь вид:

{(n + m) AgCl }.

В системе не будет ионов, способных адсорбироваться на поверхности частицы AgCl, и поверхность станет электронейтральной. При столкновении таких частиц происходит коагуляция.

Большое практическое значение имеет коагуляция смесью электролитов. При этом возможны три случая:

Аддитивное действие электролитов − электролиты действуют независимо, их суммарное действие складывается из воздействий каждого из электролитов;

Синергизм действия − взаимное усиление коагулирующего действия, для коагуляции электролитов требуется меньше, чем нужно по правилу аддитивности;

Антагонизм действия − ослабление коагулирующего действия одного электролита другим, для коагуляции их требуется добавить больше, чем требуется по правилу аддитивности.

Коллоидной защитой называется повышение агрегативной устойчивости золя путем введения в него высокомолекулярного соединения (ВМС).

Защитное действие ВМС связано с образованием на поверхности коллоидных частиц определенного адсорбционного слоя. Для характеристики защитного действия различных ВМС используют золотое число.

Золотое число − это количество миллиграммов ВМС, которое надо доба­вить к 10 см 3 0,0006 %-го красного золя золота, чтобы предотвратить его посинение при добавлении к нему 1 см 3 10 %-го раствора NaCl.

Известно, что при добавлении к красному золю золота некоторого количества NaCl начнется коагуляция золя, что приведет к изменению его окраски − он станет синим.

Вместо золя золота используются также коллоидные растворы серебра (серебряное число), гидроксида железа (железное число) и др.

В некоторых случаях введение в коллоидную систему очень малых количеств ВМС приводит не к защите, а к снижению устойчивости.

Сенсибилизацией называется снижение порога коагуляции золя при добавлении ВМС. В основном, это линейные макромолекулы, несущие полярные группы на обоих концах цепи. Макромолекула двумя концами присоединяется к двум разным частицам дисперсной фазы, скрепляя их. Этот вид коагуляции называется флокуляцией. Она используется для очистки природных и сточных вод.

Гетерокоагуляцией называется слипание разнородных частиц. Слипание разноименно заряженных частиц осуществляется за счет электростатических сил притяжения и происходит, так называемая, взаимная коагуляция. Этот процесс используют для разрушения дисперсных систем, необходимого при очистке природных и промышленных сточных вод.

Коллоидные системы характеризуются высокой раздробленностью дисперсной фазы (дисперсностью): размер коллоидных частиц обычно составляет см. Высокая дисперсность обуславливает большую поверхность раздела фаз и как следствие - большую поверхностную энер­гию Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f287, (9.1)

где s - площадь поверхности раздела фаз, формула" src="http://hi-edu.ru/e-books/xbook707/files/f16.gif" border="0" align="absmiddle" alt=") получили название лиофобных дисперсных систем. Такие системы не могут быть получены самопроизвольным диспергированием, для их об­разования должна быть затрачена внешняя энергия.

Казалось бы, термодинамически неустойчивые системы не имеют права на существование, они должны быстро терять устойчивость и агре­гировать. Однако агрегативная устойчивость таких систем может быть обеспечена кинетическими факторами..gif" border="0" align="absmiddle" alt=" (9.2)

где к - константа, объединяющая физические свойства среды; формула" src="http://hi-edu.ru/e-books/xbook707/files/f289.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" (9.3)

Здесь формула" src="http://hi-edu.ru/e-books/xbook707/files/f292.gif" border="0" align="absmiddle" alt=" (9.4)

и графически передается кривой на рис. 9.1а.

Как видно из рис. 9.1а, на больших и очень малых расстояниях преобладает энергия притяжения частиц (U < 0); на средних расстояниях (формула" src="http://hi-edu.ru/e-books/xbook707/files/f294.gif" border="0" align="absmiddle" alt=" , препятствующему агрегации частиц.

Первый минимум (1) на кривой, соответствует непосредственному соприкосновению частиц, а второй (2) - притяжению частиц, между ко­торыми имеются прослойки среды.

Устойчивость лиофобных систем, стабилизированных электроли­тами, зависит от соотношения величины электростатического барьера и кинетической энергии частиц формула" src="http://hi-edu.ru/e-books/xbook707/files/f296.gif" border="0" align="absmiddle" alt=", то при столкновении частицы не способны подойти друг к другу на расстояние 1 нм и они не слипаются. Такая система устойчива кинетически, оставаясь неустойчивой термодинамически.

Если формула" src="http://hi-edu.ru/e-books/xbook707/files/f298.gif" border="0" align="absmiddle" alt=" и, согласно (9..gif" border="0" align="absmiddle" alt=" при повышении концентрации постороннего электролита в системе. При достаточно высокой концентрации электролита толщина диффузного слоя уменьшается практически до нуля (изоэлектрическое состояние), исчезает потенциальный барьер (кривая 4), частицы слипают­ся при всяком столкновении друг с другом.

Рис.9.1. Зависимость энергии взаимодействия двух частиц U от расстоя­ния между ними - х (а); влияние концентрации электролита на величину потенциального барьера выделение">рис. 9.2. случаях адсорбция ПАВ при­водит к снижению поверхностной энергии Гиббса и тем самым - к повы­шению термодинамической устойчивости системы (адсорбционно-сольватный фактор устойчивости).

Кроме того, адсорбированные молекулы ПАВ образуют структу­ры, обладающие повышенной вязкостью и механической прочностью, разрушение которых требует определенной энергии и времени. Эти ад­сорбционные слои являются как бы барьером на пути сближения частиц и их агрегации (структурно-механический фактор устойчивости).

В случае ультрамикрогетерогенных систем, кроме перечисленных факторов, действует ещё и энтропийный фактор устойчивости. Сущность его определяется стремленгем дисперсной фазы к равномерному распре­делению по объёму системы вследствие броуновского движения. Этот фактор повышает термодинамическую устойчивость систем, снижая их общую энергию Гиббса.

Действительно, при равномерном распределении дисперсной фазы по объёму хаотичность системы выше, чем когда частицы находятся в виде агрегатов на дне сосуда..gif" border="0" align="absmiddle" alt="

такой процесс идет с уменьшением энергии Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f301.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook707/files/f303.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - время половинной коагуляции; к -константа скорости коагуляции. Константа к определяется соотношени­ем:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f313.gif" border="0" align="absmiddle" alt=" (9.6)

Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий: при нагревании или при охлаждении, перемешивании систем, действии ультразвука и т.д. Наибо­лее часто коагуляция дисперсных систем происходит при добавлении электролитов - электролитная коагуляция. Как уже описывалось выше, введете электролитов снижает высоту потенциального барьера оттал­кивания. Быстрая коагуляция наступает при введении определенного для данной системы количества электролита, при котором кинетическая энергия большинства частиц превышает величину указанного барьера. Это количество электролита в моль, вызывающее коагуляцию 1 литра золя называют порогом коагуляции Ск.

Коагулирующая способность электролитов зависит от заряда и ра­диуса ионов: порог коагуляции обратно пропорционален заряду (валентности) противоиона z в шестой степени (правило Шульца - Гарди):

Агрегативная устойчивость такого золя обеспечивается ионным фактором устойчивости. Потенциалобразующими (неиндифферентными) ионами при данном методе получения золя являются ионы формула" src="http://hi-edu.ru/e-books/xbook707/files/f238.gif" border="0" align="absmiddle" alt=" и формула мицеллы золя имеет вид:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f206.gif" border="0" align="absmiddle" alt=" образуются сравнительно не­большие по размерам седиментационно - устойчивые агрегаты. Что при­водит к повышению светорассеяния системы и, соответственно, - к уве­личению её оптической плотности. Поэтому исследование коагуляции в данном случае удобнее всего проводить с помощью турбидиметрического метода, измеряя оптическую плотность растворов золя.

Современная физическая теория коагуляции электролитами основана на общих принципах статистической физики, теории молекулярных сил и теории растворов. Ее авторами являются: Б.В. Дерягин, Л.Д. Ландау (1937-1941), Э. Фервей, Я. Овербек (по первым буквам ДЛФО).

Суть теории: между любыми частицами при их сближении возникает расклинивающее давление разделяющей жидкой прослойки в результате действия сил притяжения и отталкивания. Расклинивающее давление является суммарным параметром, учитывающим действие как сил притяжения, так и сил отталкивания.

Состояние системы зависит от баланса энергии притяжения (U пр) и энергии отталкивания (U отт). Преобладает U отт – устойчивая система. Преобладает U пр - нарушение агрегативной устойчивости – коагуляция.

Изменение энергии взаимодействия между двумя частицами при их сближении изображают графически (рис. 5.3).

Суммарную энергию системы из двух частиц (кривая 3) получают сложением U отт и U пр:

U=U отт +U пр =

где: В – множитель, зависящий от значений электрических потенциалов ДЭС, свойств среды, температуры;

е – основание натурального логарифма;

c – величина, обратная толщине диффузного слоя;

h – расстояние между частицами;

А – константа молекулярных сил притяжения.

U отт
h
U пр

Рис.5.3. Потенциальные кривые взаимодействия

коллоидных частиц:

1 – изменение энергии отталкивания с расстоянием;

2 – изменение энергии притяжения;

3 – результирующая кривая.

Рассмотрим результирующую кривую 3 на рис.5.3. На ней имеются характерные участки:

В области малых расстояний имеется глубокий первичный минимум (потенциальная яма) – значительно преобладает U пр. Первичный минимум отвечает непосредственному слипанию частиц (I).

В области больших расстояний - вторичный неглубокий минимум (вторая потенциальная яма, отвечает притяжению через прослойку среды). На схеме II.

В области средних расстояний на кривой имеется максимум и, если он расположен над осью абсцисс, то появляется энергетический барьер сил отталкивания (DU б).

Результирующая кривая 3 может иметь различный вид в зависимости от устойчивости дисперсной системы (рис.5.4.).

U отт
U пр

Рис. 5.4. Потенциальные кривые для определенных

состояний устойчивости дисперсной системы:

1 - в системе при любом расстоянии между частицами преобладает энергия притяжения над энергией отталкивания. В такой системе наблюдается быстрая коагуляция с образованием агрегатов.

2 - достаточно высокий потенциальный барьер и наличие вторичного минимума. Частицы взаимодействуют, но не имеют непосредственного контакта и разделены прослойками среды.

3 - система с высокой агрегатной устойчивостью (высокий потенциальный барьер и отсутствие вторичного минимума или при его глубине, меньшей тепловой энергии kТ).

В зависимости от высоты энергетического барьера и глубины потенциальных ям возможны различные варианты поведения частиц при сближении (рис.5.5), частицы обладают кинетической энергией – kТ.

Рис.5.5. Схемы взаимодействия коллоидных частиц

Состояние в: Малая высота барьера и неглубокий вторичный минимум: DU б @DU я £kT частицы вступают в ближнее взаимодействие, т.е. непосредственно соприкасаются – наступает коагуляция Состояние а: Характеризуется тем, что перекрываются диффузные слои и сохранены прослойки среды между частицами (гели). Энергетический барьер довольно высок вторичный минимум неглубок: DU я ³kT Взаимодействующие частицы не могут разойтись (удерживают силы притяжения) и не могут приблизиться вплотную (препятствуют силы отталкивания). Добавление электролита чаще всего приводит к коагуляции (уменьшается h). Состояние б: Высокий энергетический барьер DU б ³kT и отсутствие или неглубокий вторичный минимум DU я £kT: Частицы не могут преодолеть барьер и расходятся без взаимодействия. Такая система агрегативно устойчива.

Дисперсная система агрегативно устойчива при высоком энергетическом барьере сил отталкивания.

Магнитную жидкость, включающую в себя в качестве дисперсной фазы высокодисперсные магнитные материалы (железо, кобальт, магнетит, ферриты и т.д.) с размером частиц 50-200 Е, в качестве дисперсионной среды жидкие углеводороды, силиконовые и минеральные масла, воду, фторорганические соединения и т.д., можно отнести к коллоидным растворам или золям.

Устойчивость коллоидных систем - это центральная проблема коллоидной химии, и ее решение имеет огромное практическое значение в геологии, земледелии, биологии, технике. Используя основные понятия современной теории устойчивости, рассмотрим кратко условия устойчивости магнитных жидкостей.

Следует различать агрегативную устойчивость, то есть устойчивость частиц к агрегации и седиментационную устойчивость - устойчивость к воздействию гравитационного магнитного и электрического полей, центробежных сил и т.д.

Седиментация заключается в свободном оседании частиц дисперсной фазы под действием сил тяжести, в результате чего изменяется концентрация дисперсных частиц в объеме дисперсионной среды в зависимости от высоты слоя, происходит расслоение системы и образование высококонцентрированного осадка. Свободной седиментации частиц препятствует с одной стороны сила вязкого сопротивления дисперсионной среды (стоксовая сила), а с другой стороны - диффузионное перемещение частиц, однако в этом случае размер частиц должен быть достаточно мал, чтобы обеспечивалось их броуновское тепловое движение. Условием седиментационной устойчивости является малость скорости оседания по сравнению со скоростью броуновского движения. В частности, для магнитных жидкостей на керосине, воде и минеральном масле при использовании магнетита в качестве феррофазы соответственно получены следующие значения максимальных размеров частиц: d = 8·10 -6 м, d = 7·10 -6 м и d = 20·10 -6 м.

Агрегативная устойчивость коллоидных систем определяется балансом сил отталкивания и притяжения между частицами. Силами притяжения являются Лондоновские силы, а к силам отталкивания относятся силы электростатического или стерического отталкивания.

Это связано с тем, что вследствие малых размеров частицы коллоида являются однодоменными и имеют собственный магнитный момент. Взаимодействие между магнитными частицами приводит к их слипанию в агрегаты, что приводит, в конечном счете, к седиментации магнитных частиц. Кроме того, при сближении частиц возникают Лондоновские силы, которые также приводят к слипанию частиц. Для предотвращения коагуляции частиц их поверхность покрывается слоем длинных, имеющих цепочечную структуру, молекул поверхностно-активного вещества. Оболочка из молекул ПAB предотвращает сближение частиц, так как при ее сжатии возникают силы отталкивания. И, наконец, между частицами действуют электростатические силы, возникающие благодаря взаимодействию двойных электрических слоев, окружающих частицы. Противодействие агрегатированию и коагуляции частиц определяет агрегативную устойчивость коллоидных систем и зависит от баланса сил, действующих между ферромагнитными частицами - силами притяжения (силы Ван-дер-Ваальса, диполь-дипольного взаимодействия и магнитные силы) и силами отталкивания (силы электрической и стерической природы). Природа и интенсивность названных выше сил подробно обсуждалась в ряде работ.

Электростатическое отталкивание обусловлено существованием двойных электрических слоев, состоящих из ионов на поверхности дисперсных частиц в жидкой среде.

Так как рассматриваемые нами жидкости являются коллоидными системами, то для них будут справедливы законы коллоидной химии. Важной особенностью и основным отличием магнитных жидкостей (МЖ) от обычных коллоидных систем является наличие у них магнитных свойств. И поэтому, кроме основных сил взаимодействия между частицами (сил Лондоновского притяжения, сил электростатического и стерического отталкивания), необходимо учитывать еще и силы магнитного взаимодействия. Баланс этих сил или преобладание сил отталкивания будет обеспечивать устойчивость коллоидной системы. Устойчивость является одной из важнейших характеристик магнитных жидкостей и в сильной степени определяет возможность их успешного применения. Под устойчивостью понимают способность частиц магнитных жидкостей не агрегировать и сохранять, а течение определенного времени постоянными свои физические, химические и магнитные свойства. Причем это время, как и для любой коллоидной системы, будет зависеть, прежде всего, от размеров частиц дисперсионной фазы, химического состава и физических характеристик коллоида, внешних условий (например, температуры, величины магнитного поля и др.) и может колебаться от нескольких секунд до нескольких лет.

Магнитные частицы в коллоиде вследствие малости размеров является однодоменными и суперпамагнитными, то есть они полностью намагничены в одном направлении и их магнитное взаимодействие можно приближенно, описывать как взаимодействие точечных диполей.

Между частицами, покрытыми слоем длинных цепочечных молекул, при их соприкосновении возникает сила отталкивания, называемая стерической. Стерическое отталкивание возникает из-за повышения локальной концентрации длинных молекул полимера (ПАВ) в зоне пересечения адсорбционных слоев (осмотический эффект).

Для того чтобы адсорбционный слой на магнитных частицах не разрушался, необходимо, чтобы силы стерического отталкивания превосходили силы диполь-дипольного взаимодействия.

Однако достаточная прочность адсорбционного слоя еще не означает отсутствия коагуляции, так как две частицы, разделенные адсорбционным слоем 2д, могут удерживаться вместе силами магнитного притяжения. Такой агломерат может быть разрушен тепловым движением частиц. Так как с ростом толщины сольватного слоя расстояние между частицами растет, то энергия диполь-дипольного взаимодействия уменьшается и, значит, увеличивается влияние теплового движения частиц на их агрегатирование.

Толщина сольватной оболочки, препятствующая агрегированию частиц с учетом их тепловой энергии и диполь-дипольного взаимодействия, зависит от температуры, размеров частиц, их магнитных характеристик. В частности , для магнитных частиц магнетита при комнатной температуре:

д- длина молекул ПАВ.

Если в качестве поверхностно-активного вещества для магнетитовых частиц используется олеиновая кислота (д=20?) , то условие д кр <<д говорит о том, что в этом случае от коагуляции будут защищены частицы, диаметр которых существенно меньше 190Е. С другой стороны, очень малые частицы (10-20Е) теряют свои магнитные свойства вследствие малости энергии обменного взаимодействия по сравнению с тепловой энергией. Поэтому наиболее приемлемым, с точки зрения агрегативной устойчивости, является размер частиц магнетита 40-160Е, а применение поверхностно-активных веществ с большей, чем у олеиновой кислоты, длиной молекул, обеспечит стабилизацию более крупных частиц магнетита.

Итак, устойчивость МЖ определяется равновесием всех возможных факторов взаимодействия (межмолекулярного, магнитного, структурно-механического, а для полярных сред - электростатического) между частицами дисперсной фазы. В случае если над силами притяжения преобладают силы отталкивания, система находится в устойчивом состоянии. В противоположном случае - система стремится к разрушению коллоидной структуры.

Таким образом, предвидеть поведение МЖ можно, проведя суммирование энергии отталкивания (электростатической для полярных сред и обусловленной ПАВ) с энергией магнитного и межмолекулярного притяжения. Положительный результат сложения указывает на преобладание сил отталкивания, из чего можно сделать вывод об устойчивости системы. Отрицательный результат позволяет предположить, что система кинетически неустойчива. На основании всего изложенного выше можно сделать вывод, что самый оптимальный вариант коллоидного раствора МЖ представляет собой следующую систему: магнитные частицы размером 50-200 Е, покрытие слоем ПАВ и распределенные в жидкой среде, свободной от низкомолекулярных электролитов. Именно в этом случае силы электростатического отталкивания минимальны, силы межмолекулярного и магнитного притяжения минимальны, а структурно-механический фактор стабилизирует систему самым эффективным образом, и МЖ в целом представляет собой, следовательно, наиболее стабильную во времени, пространстве, гравитационном и электромагнитном полях коллоидную систему.

Основным методом очистки природных и сточных вод от мелкодисперсных, эмульгированных, коллоидных и окрашенных примесей (1 и 2 группы) является коагуляция и флокуляция. Методы основаны на агрегировании частиц дисперсной фазы с последующим их удалением из воды механическим отстаиванием.

Эффективность и экономичность процессов коагуляционной очистки сточных вод определяется устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, плотности частиц, величины электрокинетического потенциала, концентрации, наличия в сточной воде других примесей, например, электролитов, высокомолекулярных соединений.

Существуют различные способы проведения коагуляции, целесообразность применения которых зависит от факторов обусловливающих агрегативную устойчивость систем.

Агрегативная устойчивость коллоидных систем зависит от их строения.

Обладая большой удельной поверхностью, коллоидные частицы способны адсорбировать из воды ионы, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равные по величине. В результате на поверхности возникает двойной электрический слой. Ионы относительно прочно связанные с дисперсной твердой фазой называют потенциалопределяющими . Они нейтрализуются избытком противоионов . Толщина двойного слоя в водных растворах не превышает 0,002 мм.

Степень адсорбции ионов зависит от сродства адсорбируемых ионов к поверхности, их способности образовывать недиссоциируемые поверхностные соединения. При адсорбции ионов одинаковой валентности адсорбционная способность повышается с увеличением радиуса иона и, соответственно, его поляризуемости, т.е. способности притягиваться к поверхности коллоидной частицы. Увеличение радиуса иона сопровождается также уменьшением его гидратации, наличие плотной гидратной оболочки препятствует адсорбции, т.к. уменьшает электрическое взаимодействие иона с поверхностью коллоидной частицы.

Согласно современным представлениям о строении двойного электрического слоя слой противоинов состоит из двух частей. Одна часть примыкает к межфазной поверхности и образует адсорбционный слой, толщина которого равна радиусу составляющих его гидратированных ионов. Другая часть противоионов находится в диффузном слое, толщина которого зависит от свойств и состава системы. В целом мицелла электронейтральна. Строение мицеллы – коллоидной частицы – представлено на рис.1.1.

Разность потенциалов между потенциалопределяющими ионами и всеми противоионами называется термодинамическим φ-потенциалом.

Заряд на частицах препятствует их сближению, чем, в частности, и определяется устойчивость коллоидной системы. В целом устойчивость коллоидных систем обусловлена наличием заряда у гранулы, диффузионного слоя и гидратной оболочки.



Рис.3.1. Строение мицеллы: Рис.3.2. Схема двойного электрического

I – ядро мицеллы; слоя в электрическом поле

II – адсорбционный слой; (I-II – гранула);

III – диффузионный слой;

IV – гидратная оболочка

При движении частицы в дисперсной системе или при наложении электрического поля часть противоионов диффузного слоя остается в дисперсной среде и гранула приобретает заряд, соответствующий заряду потенциалопределяющих ионов. Таким образом, дисперсионная среда и дисперсная фаза оказываются противоположно заряженными.

Разность потенциалов между адсорбционным и диффузным слоями противоионов называется электрокинетическимζ – потенциалом (рис. 1.2).

Электрокинетический потенциал является одним из важнейших параметров двойного электрического слоя. Величина ζ – потенциала обычно составляет единицы и десятки милливольт в зависимости от состава фаз и концентрации электролита. Чем больше величина ζ– потенциала, тем более устойчива частица.

Рассмотрим термодинамические и кинетические факторы устойчивости дисперсных систем:

· Электростатический фактор устойчивости . С позиции физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы (ее агрегативной неустойчивости). Если на коллоидных частицах образовался адсорбционный слой, имеющий ионную природу, то при достаточном сближении одноименно заряженных частиц возникают электростатические силы отталкивания. Чем толще двойной электрический слой, тем интенсивнее результирующая сила отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Таким образом, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя.

· Сольватационный фактор устойчивости . Силы отталкивания могут быть вызваны существованием на поверхности сближающихся частиц сольватных (гидратных) оболочек или так называемых граничных фаз, состоящих лишь из молекул дисперсионной среды и обладающих особыми физическими свойствами. Ядро мицеллы нерастворимо в воде, следовательно, и не гидратировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя гидратированы. Благодаря этому вокруг ядра создается ионно-гидратная оболочка. Толщина ее зависит от распределения двойного электрического слоя: чем больше ионов находится в диффузном слое, тем больше и толщина гидратной оболочки.

· Энтропийный фактор устойчивости. Обусловлен тепловым движением сегментов молекул ПАВ, адсорбированных на коллоидных частицах. При сближении частиц, имеющих адсорбционные слои из молекул ПАВ или высокомолекулярных веществ, происходит сильное уменьшение энтропии адсорбционного слоя, что препятствует агрегированию частиц.

· Структурно-механический фактор устойчивости. Адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц. Защитные слои противоионов-стабилизаторов, являясь гелеобразными, обладают повышенной структурной вязкостью и механической прочностью.

· Гидродинамический фактор устойчивости . Скорость коагуляции может снижаться благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.

· Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.

Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой.

Сольватация при сольватационном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снизить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.

Дестабилизация системы может быть вызвана различными причинами, результатом многих из них является сжатие диффузного слоя, а следовательно, и уменьшение значения ζ-потенциала. Сжатие диффузного слоя уменьшает и степень гидратации ионов, в изоэлектрическом состоянии (ζ= 0, мВ) гидратная оболочка вокруг ядра предельно тонка (10 -10 м) и не защищает мицеллы от слипания при столкновении, в результате начинается агрегация частиц.

Седиментационная устойчивость коллоидных систем (СУ) – способность дисперсной системы сохранять равномерное распределение частиц по всему объему) обусловлена броуновским движением коллоидных дисперсий и диффузией частиц дисперсной фазы.

Седиментационная устойчивость системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы оседают, и диффузии, при которой частицы стремятся к равномерному распределению по объему. В результате возникает равновесное диффузионно-седиментационное распределение частиц по высоте, зависящее от их размера.

Диффузия замедляется с увеличением размера частиц. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, приводит к выравниванию концентраций по всему объему. Чем меньше частицы, тем больший срок требуется для установления равновесия.

Скорость оседания частиц пропорциональна квадрату их диаметра. В грубодисперсных системах скорость достижения равновесия сравнительно большая и равновесие устанавливается в течение нескольких минут или часов. В тонкодисперсных растворах она мала, и до момента равновесия проходят годы или даже десятки лет.

Виды коагуляции

В современной теории коагуляции дисперсных систем разработанной Дерягиным, Ландау, Фервеем, Овербеком (теория ДЛФО) степень устойчивости системы определяется из баланса молекулярных и электростатических сил. Различают два типа коагуляции:

1) концентрационную, при которой потеря устойчивости частиц связана со сжатием двойного слоя;

2) нейтрализационную (коагуляция электролитами), когда наряду со сжатием двойного слоя уменьшается потенциал φ 1 .

Концентрационная коагуляция характерна для сильно заряженных частиц в высококонцентрированных растворах электролитов. Чем выше потенциала φ 1 ДЭС, тем сильнее противоионы притягиваются к поверхности частиц и своим присутствием экранируют рост электрического поля. Поэтому при высоких значениях φ 1 силы электростатического отталкивания между частицами не возрастают безгранично, а стремятся к некоторому конечному пределу. Этот предел достигается при φ 1 более 250 мв. Отсюда следует, что взаимодействие частиц с высоким φ 1 -потенциалом не зависит от величины этого потенциала, а определяется только концентрацией и зарядом противоионов.

По мере увеличения концентрации электролита величина ζ – потенциала (ДП) снижается, а φ 1 практически сохраняет свое значение (рис. 3.3).



Последние материалы раздела:

Промокоды летуаль и купоны на скидку
Промокоды летуаль и купоны на скидку

Только качественная и оригинальная косметика и парфюмерия - магазин Летуаль.ру. Сегодня для успешности в работе, бизнесе и конечно на личном...

Отслеживание DHL Global Mail и DHL eCommerce
Отслеживание DHL Global Mail и DHL eCommerce

DHL Global Mail – дочерняя почтовая организация, входящая в группу компаний Deutsche Post DHL (DP DHL), оказывающая почтовые услуги по всему миру и...

DHL Global Mail курьерская компания
DHL Global Mail курьерская компания

Для отслеживания посылки необходимо сделать несколько простых шагов. 1. Перейдите на главную страницу 2. Введите трек-код в поле, с заголовком "...